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Chapter 4

Transformed Perturbation Solutions for

Dynamic Stochastic General

Equilibrium Models

4.1 Introduction

Since the seminal paper of Kydland and Prescott (1982) many different methods have

been proposed to approximate the solution of Dynamic Stochastic General Equilibrium

(DSGE) models, see for example Taylor and Uhlig (1990), Christiano and Fisher (2000)

and Aruoba et al. (2006) for comparison studies. It is well known that, in most cases,

closed form analytical solutions do not exist, and hence we need numerical solution meth-

ods.

When selecting solution methods, two properties are of main interest: speed and ac-

curacy. On the one hand, arbitrarily accurate solution algorithms such as value function

iteration (Bertsekas, 1987) and projection methods (Judd, 1992) have existed for a long

time. However, such methods need long computing times. This is problematic, especially

when one is interested in estimating a DSGE model, since then the solution will have

to be computed for a range of different parameter values. On the other hand, very fast

solution methods such as linearization (Blanchard and Kahn, 1980) and higher-order per-

turbation methods (Judd and Guu, 1997; Schmitt-Grohé and Uribe, 2004) are available.

These methods approximate the solution by taking a Taylor series expansion around the
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deterministic steady state. Unfortunately, despite being very fast, perturbation methods

also have important limitations.

Linearization, or first order perturbation, can be very inaccurate and is often too sim-

plistic from an economic perspective. For example, linear solutions are certainty equiva-

lent and therefore miss potential volatility dynamics in the innovations. That means that

one needs higher order perturbation methods for risk to matter, which affects a multitude

of topics. For instance, this is a relevant limitation when attempting to model time vary-

ing risk premia as in Fernández-Villaverde et al. (2011); Rudebusch and Swanson (2012);

Fernández-Villaverde et al. (2015) and requires a perturbation approximation of at least

third order to be solved. Similarly, linearization is highly inaccurate when comparing

welfare across different environments and can lead to paradoxical results (Tesar, 1995).

Kim and Kim (2003b) show that a welfare comparison based on a linear approximation

of the policy function may yield spurious results in a two-agent economy and that per-

turbation approximations of at least second order are required. Some welfare studies that

use higher order perturbation approximations can be found in Kollmann (2002), Kim and

Kim (2003a) and Bergin et al. (2007).1 Finally, Van Binsbergen et al. (2012) discuss the

need for higher order perturbation solutions to study consumer risk aversion.

The speed of perturbation methods and their ability to locally capture important non-

linear dynamics renders high-order perturbation a popular solution method. However,

higher-order perturbation is an unattractive approximation method from a global perspec-

tive as it defines an unstable dynamic system which produces explosive paths. In fact, one

can commonly show that sample paths generated using higher-order perturbations diverge

to infinity almost surely, even if the true policy function implies stable dynamics with

nonexplosive paths. This problem is outlined in Aruoba et al. (2006) and Den Haan and

De Wind (2010) and encountered in Fahr and Smets (2010) and Den Haan and De Wind

(2012), among others. See Section 3.3.2 and Section 5 in Den Haan and De Wind (2010)

for extensively discussed examples.

In order to deal with the unstable dynamics of higher-order perturbation solutions,

Kim et al. (2008) proposed the pruning method. The pruning method has been success-

fully implemented in software packages and effectively solves the problem of explosive

1Woodford (2002) discusses a set of assumptions that ensure first order approximations are sufficient.
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dynamics; see also Andreasen et al. (2017) for recent results on the stability and station-

arity of pruned solutions. However, pruned solutions must sacrifice local approximation

accuracy for stability. Den Haan and De Wind (2010) show that pruning “creates large

systematic distortions”. Furthermore, pruning is a simulation-based approximation and

hence does not provide a policy function. In fact, approximations based on the pruning

procedure contain different updates for identical values of the model’s original state vari-

ables. This means that “the implied policy rule is not even a function of the model’s state

variables” (Den Haan and De Wind, 2010).

Our paper introduces a new transformed perturbation solution method for DSGE mod-

els that is designed to avoid explosive paths produced by higher-order perturbation solu-

tions. Transformed perturbation is as fast as standard perturbation methods and can be

easily implemented in existing software packages like Dynare as it is obtained directly

as a transformation of existing perturbation solutions. The new method transforms the

standard perturbation approximation by replacing higher order monomials in the Taylor

expansion with transformed ones that are based on the transformed polynomials intro-

duced in Blasques et al. (2014). Transformed polynomial functions share the same funda-

mental approximation properties as polynomial functions. Blasques et al. (2014) shows

that transformed polynomials are dense in the space of continuous functions and attain

the same rates of convergence as polynomials in Sobolev spaces of n times continuously

differentiable functions. Additionally, in this paper, transformed perturbation is shown to

converge on analytic function domains and to have the same excellent local properties as

the standard perturbation method for continuously differentiable functions of appropriate

order. From a global perspective however, transformed perturbation performs infinitely

better than regular perturbation, because it provides a way of scaling down the higher

order perturbation terms that cause explosive behavior when the solution path moves far

away from the steady state. That way, transformed perturbation can be guaranteed to not

create additional fixed points if the Blanchard-Kahn conditions are satisfied. Moreover,

unlike pruning, the new solution method does not need to sacrifice accuracy by ignoring

higher order effects. Additionally, transformed perturbation is guaranteed to be always

more accurate than standard perturbation methods, which is not the case for pruned solu-

tions. Finally, in contrast to pruning, transformed perturbation also has the advantage of
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delivering a policy function from which the simulations are drawn.

In this paper, we prove that transformed perturbation produces non explosive paths

and that solutions are stable and strictly stationary ergodic with bounded moments. Ad-

ditionally, we show that solution paths exhibit fading memory (i.e. geometric ergodicity

and absolute regularity or β-mixing) and that sample moments of the process converge

exponentially fast to the moments of the solution. These are crucial properties for con-

ducting simulation-based estimation of parameters and simulation-based analysis of the

DSGE model. Overall, this renders the transformed polynomial solution attractive from

both a practical and theoretical stand-point.

We demonstrate the accuracy of the transformed perturbation method extensively for

two nonlinear DSGE models in which higher order perturbation is infeasible. We com-

pare second order transformed perturbation to first order perturbation and second order

pruning. The first model is a partial equilibrium model in which agents face idiosyncratic

income risk, introduced in Deaton Angus (1991) and Den Haan and De Wind (2012). For

this model we find that sample path errors of our method are less than half of those of

pruning and up to six times less than those for first order perturbation. This then results

into sample moments of the transformed perturbation method being up to ten times more

accurate than pruning and one-hundred times more accurate than perturbation. The sec-

ond DSGE model we study is a matching model from Den Haan and De Wind (2012).

Here transformed perturbation outperforms pruning up to a factor ten on path errors and

a factor thirty for sample moments. Moreover perturbation has path errors that are up

to twenty-five times larger and sample moment errors that are up to one-hundred times

larger compared to transformed perturbation.

The paper is structured as follows. We start by stating the definition of the trans-

formed perturbation method in Section 4.2. Section 4.3 analyses the statistical properties

of the transformed perturbation system and provides lenient and accessible conditions that

ensure paths are nonexplosive and laws of large numbers can be applied. Section 4.4 pro-

vides a theoretical foundation and motivation for the transformed perturbation approxima-

tion method. Finally Section 4.5 discusses the accuracy of the new method. We provide

theoretical results that show that transformed perturbation, accuracy wise, matches regu-

lar perturbation locally and strongly outperforms it globally. Moreover, we demonstrate
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for two example models that transformed perturbation outperforms pruning and regular

perturbation on numerous common criteria.

4.2 Transformed Perturbation

4.2.1 The state space

Let ȳt be an ny-dimensional vector of control variables, let x̄t be an nx-dimensional vector

of endogenous state variables and let zt be an nz-dimensional vector of exogenous state

variables. We study the general class of DSGE models characterized by a set of first-order

dynamic optimality conditions that can be written as

0 = Et(f(ȳt+1, ȳt, x̄t+1, x̄t, zt+1, zt)), (4.1)

zt+1 = Λzt + σηεt+1. (4.2)

Here Et denotes the expectation operator conditional on the information at time t, and

f : R2(nx+ny+nz) → Rny+nx is a real function. The matrix Λ is assumed to be invertible

with spectral radius smaller than one. Finally σ is the auxiliary perturbation parameter

and εt+1 is a nz-dimensional vector of exogenous innovations with mean zero and finite

second moment that takes values in E ⊆ Rnz . Throughout the paper, we will assume that

(εt)t∈N is an independent and identically distributed (iid) stochastic process.

We define the deterministic steady states yss and xss of ȳt and x̄t respectively such

that

f(yss, yss, xss, xss,0nz ,0nz) = 0.

Furthermore, let yt = ȳt−yss and xt = x̄t−xss denote the random variables in deviations

from the steady-state, where yt takes values in Y ⊆ Rny and xt takes values in X ⊆ Rnx .

We write Z ⊆ Rnz for the domain of zt. Following Den Haan and De Wind (2012), the
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solution to the model given in equation (4.1) is of the form

yt+1 = g(xt, zt+1, σ), (4.3)

xt+1 = h(xt, zt+1, σ). (4.4)

We refer to (4.3) and (4.4) as the observation and state equations respectively. It follows

from our setup that g(0nx ,0nz , 0) = 0ny and h(0nx ,0nz , 0) = 0nx .

Both functions g and h, known as policy functions, are unknown functions that must

be approximated. If the function g in the observation equation is measurable, then the

stability of the solution of a DSGE model depends entirely on the state equation. For this

reason we will focus on approximating the function h in (4.4).

4.2.2 Function approximation methods

A wide range of techniques have been proposed in the literature to approximate the un-

known policy function h. In most cases, the approximate policy function is obtained as

an element of a vector space spanned by a set of basis functions {φ1, ..., φm}:

h(x, z, σ) ≈
m∑
i=1

Aiφi(x, z, σ),

where A1, ..., Am are matrices of coefficients that weight the basis functions φ1, ..., φm.

There exist a multitude of popular sets of basis functions and weight matrix calcu-

lation methods that have been proposed in the function approximation literature. Well

known classes of basis functions include power monomials, which are used with great

success in Taylor expansions, sigmoid trigonometric functions, that are prominently fea-

tured in Fourier approximations, Chebyshev polynomials, that play an important role on

orthogonal polynomial function approximation, Legendre polynomials, which are often

used for approximating density functions, and logistic functions, comprehensively ex-

plored in artificial neural network approximations. Popular methods for calculating the

weight matrices include Taylor’s method which obtains the matrices as weighted deriva-

tives at a given expansion point and minimizes the so called Taylor semi-norm (Apostol,

1967), function colocation methods, which minimize a discrete distance between the true
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and approximate policy function at a finite number of points and spectral approximation

methods, that minimize a continuous distance between the two functions. See e.g. Powell

(1981) for an overview of approximation literature and Judd (1998) for an application of

these methods to approximating policy functions of dynamic stochastic models.

4.2.3 Perturbation

Perturbation is a method that approximates the unknown policy function h by using power

monomials as basis functions in combination with Taylor’s method to find the weighting

matrices. This method is of particular interest in approximating policy functions of DSGE

models as it provides a fast and analytically tractable way of obtaining the weighting ma-

trices. The expansion point used in Taylor’s method is the deterministic steady state

(0nx ,0nz , 0). Choose x ∈ X and z ∈ Z and define v = (x, z) and
⊗

i v = v⊗ · · · ⊗ v︸ ︷︷ ︸
i times

,

where the empty Kronecker product is set to one. Then the m’th order perturbation ap-

proximation of h evaluated at (x, z, σ) can be expressed as

hp(x, z, σ) := H0 +Hxx +Hzz +
m∑
i=2

Hi

⊗
i

v, (4.5)

where we grouped all terms of v of the same power, regarding σ as a constant. That is,

H0 =
m∑
j=0

1

j!

∂j

∂σj
h(0nx ,0nz , 0)σj Hx =

m−1∑
j=0

1

j!

∂j+1

∂σj∂x
h(0nx ,0nz , 0)σj

Hz =
m−1∑
j=0

1

j!

∂j+1

∂σj∂z
h(0nx ,0nz , 0)σj Hi =

m−i∑
j=0

1

i!j!

∂j+i

∂σj∂vi
h(0nx ,0nz , 0)σj

Thus, H0 is an nx × 1 vector that is the sum of all the derivatives of h with respect to

powers of σ. The matrix Hx is an nx × nx matrix that is the sum of all the derivatives of

h with respect to x and powers of σ. The matrix Hz is an nx × nz matrix that is the sum

of all the derivatives of h with respect to z and powers of σ. Finally, the matrices Hi are

of dimension nx× (nx +nz)
i and given by the sum of all the derivatives of h with respect

to vi and powers of σ.
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4.2.4 The transformed perturbation method

A disadvantage of the power monomial set of basis functions, and therefore of perturba-

tion, is that the derivative of the approximation function tends to infinity away from the

steady state if m > 1. This creates highly explosive regions in the state space which

in practice means that sample paths eventually diverge to infinity with probability one.

The transformed perturbation method solves this problem by using another set of basis

functions called the transformed power monomials. This set of basis functions satisfies

all the advantageous properties that classical power monomials do. Blasques et al. (2014)

shows that transformed polynomials with unrestricted weighting matrices can be used

to approximate continuous functions with arbitrary accuracy, in the same way as classi-

cal polynomials, by application of the Stone-Weierstrass Theorem (Stone, 1937, 1948).

Additionally, Blasques et al. (2014) characterizes the convergence rates of transformed

polynomials on Sobolev spaces of smooth n-times continuously differentiable functions

with nth derivative bounded in Lp norm, through the application of Plesniak’s extension

of Jackson’s Theorem (Plesniak, 1990).

The set of transformed power monomials is obtained by multiplying the monomials

of order greater than one with an exponentially fast decaying function Φτ : X → R that

is a multivariate adaptation of the transformed function of Blasques et al. (2014) and is

defined as

Φτ (x) = e−τ‖x‖
2
e , (4.6)

where ‖x‖e denotes the Euclidean norm of x. Figure 4.2.1 plots the second and third

order one dimensional transformed monomials for varying values of τ . Note that the case

τ is zero sets the transformed monomials equal to the regular monomial basis functions.

The figure shows that the transformed monomials are almost identical to regular monomi-

als close to the steady state at zero. However, the derivatives of transformed monomials

vanish away from the steady state, which implies that no explosive regions are created

in the state space. In Section 4.5 we will further show that transformed perturbation has

the same local approximation properties as classical perturbation. In particular, local ap-

proximation rates are the same as for classical perturbation, and transformed perturbation
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Figure 4.2.1: Plots of the second, respective third, order one dimensional transformed monomial
in the left, respective right, panel for values of τ ∈ {0, 0.2, 0.5}.

approximations converge uniformly on compact analytic domains, just like perturbation

methods do. A large number of additional advantages of transformed perturbation over

classical perturbation and pruning methods are documented in Section 4.3 and Section

4.5.

State variables can be of different orders in size, so we replace the vector x in (4.6)

by the relative differences from the steady state x̃ = x/xss, where dividing is done entry

wise, to ensure all variables have equal effect. This definition works poorly if an entry of

xss is close to zero. For such an entry we take the simple transformation x 7→ ex ≈ 1 +x,

which is almost linear close to zero, and define x̃ = (ex+xss − exss)/exss . The m’th order

transformed perturbation approximation of h evaluated at (x, z, σ) is then defined as

htp(x, z, σ) = H0 +Hxx +Hzz +

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃), (4.7)

where all the H matrices are obtained using Taylor’s method and thus they are identical

to those in the regular perturbation function (4.5).

The constant τ determines the speed at which the higher order terms in (4.7) are going

to zero when moving away from the origin. Its value influences the shape of the resulting

policy function, and thus requires careful consideration. We offer two methods to set

τ . The first method is to find the optimal τ , denoted τ ∗, by minimizing some criterion
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function. In this paper we chose to minimise the maximum Euler errors on a relevant set

around the steady state. The advantage of this method is that we get the best possible

value for τ , according to the criterion function. The disadvantage is that minimizing

the criterion function potentially is time-consuming. In an estimation setting we fix the

optimal τ ∗ at the start and then estimate the remaining parameters while τ ∗ remains fixed.

This means that the possibly time consuming task of finding τ ∗ has to be executed only

once, making the method almost as fast as perturbation, still viable for estimation and

very accurate if the optimal τ ∗ does not vary too much with the parameters. The second

method is designed to avoid the optimization completely and is characterised by a plug-in

τ , denoted τ̂ , which is less precise, but found immediately. The plug-in value is given by

τ̂ =
1

c
log

(
1

1− ρ(Hx)

)
, (4.8)

where ρ(Hx) is the spectral value of the autoregressive part of the regular perturbation

solution and c is an approximation of the average range that the state variables take place

in. This range could be set according to prior knowledge on the variables, or approximated

by another solution method. In our case we used linear perturbation to simulate a series

and find the approximate range of our variables. In an estimation setting we update τ̂ as

the parameters are updated, since its calculation is very fast. See Section 4.4 for a detailed

discussion on the choice for our plug-in value.

4.3 Probabilistic analysis of the solutions

Throughout this paper we work with norms ‖ · ‖ on Euclidean space and their induced

matrix norms, which we will denote with the same notation ‖ · ‖ as there should be no

confusion in their use. Note that all matrix norms are equivalent, so that our statements

will work for any chosen norm.

Let x0 ∈ X and z0 ∈ Z be fixed and define the exogenous sample paths (zt)t≥0 and
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the transformed perturbation sample paths (xt)t≥0 recursively by

zt+1 = Λzt + σηεt+1,

xt+1 = htp(xt, zt+1, σ).

In this section we analyse the dynamics of the transformed perturbation system and pro-

vide two results on the stability of sample paths. To do so we split the perturbation

updating equation (4.7) into the sum of its linear part H0 + Hxx + Hzz and its nonlinear

part

D(x, z) :=

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃). (4.9)

Our results are based on the observation that the transformed perturbation policy function

(4.7) is asymptotically equal to its linear part as ‖x‖ → ∞. This follows because an

exponential function decays at greater speed than a polynomial, see Figure 4.2.1, and

thus for any 0 ≤ i ≤ m we have

lim
‖x‖→∞

(⊗
i

x

)
Φτ (x̃) = 0ni

x
.

We therefore study the transformed perturbation method as its asymptotic linear process

plus a deviation (4.9). Linear autoregressive processes and their stability have been exten-

sively studied. They are much easier to analyse compared to their nonlinear counterparts,

because we get an analytical closed form when we expand the expressions for xt and zt

back in time. It can be shown that if backwards expanding converges, then the limit is

a stationary ergodic solution to the system. See Theorem 3.1 in Bougerol (1993) for a

general result on the stability of contracting systems that uses this approach. In our first

result we closely mimic this technique by bounding the deviation from the linear process.

We require the following assumptions.

Assumption A.

A1. The spectral radius ρ(Λ) < 1.

A2. The spectral radius ρ(Hx) < 1.
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A3. There exists an r > 0 such that E‖εt‖rm <∞.

Our first result shows that solution paths generated by the transformed perturbation

solution are non-explosive almost surely if Assumption A holds. The conditions in As-

sumption A are very lenient. Assumption A2 is close to being both sufficient and nec-

essary. The spectral radius is a measure for the maximal scale at which Hx can stretch

a vector. Therefore, if ρ(Hx) > 1, then an eigenvector belonging to the eigenvalue that

is greater than one in absolute value is expanded by Hx. If the space spanned by this

vector is reachable from the exogenous variable space Z , then expanding backwards will

explode and thus diverge. Assumption A3 is satisfied for any r if, for example, the εt have

finite support, or are normally distributed, or have sub-exponential tails. Additionally, for

fat tailed distributions, the moments of xt and zt are a fraction of those of the innovations.

Theorem 4.3.1 (Non explosive paths). Suppose that Assumption A holds. Then the dy-

namic system defined in (4.2) and (4.4), featuring the transformed perturbation policy

function given in (4.7), produces sample paths that are non explosive almost surely, i.e. the

paths (zt)t∈N and (xt)t∈N satisfy

lim inf
t→∞

‖zt‖ <∞ and lim inf
t→∞

‖xt‖ <∞ a.s.

Theorem 4.3.1 shows that the transformed perturbation method does not produce ex-

plosive paths, unlike regular perturbation sample paths. However, we can show much

more. Our stability results are based on Markov chain theory as developed in Meyn and

Tweedie (1993). We are in a Markov chain setting, because we have assumed that (εt)t∈N

is an iid sequence. We provide two sets of assumptions, the first of which is more general

and harder to verify, while the second set imposes additional constraints that are straight-

forward to verify.

A point x∗ ∈ X is called reachable if for every open set x∗ ∈ O ⊆ X and start-

ing value x0 ∈ X there exists a t ∈ N such that P(xt ∈ O) > 0. A subset of X is

called reachable if all the points in it are reachable. We will need the following additional

assumptions.
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Assumption B.

B1. X has an open reachable subset.

B2. The innovation εt is absolutely continuous with respect to the Lebesque measure

on E with strictly positive density on a connected subset of E .

Our second result establishes the stationarity and ergodicity of the transformed per-

turbation solution. Additionally, it shows that the solution paths have fading memory in

the sense of geometric ergodicity and absolutely regularity (or β-mixing) of the process.

Finally, it also shows that the solution paths have finite r-th moment. Stationarity, fading

memory, and bounded moments are all important ingredients in the statistical analysis of

DSGE models, from estimation to probabilistic analysis.

Theorem 4.3.2. (Stationarity, fading-memory and bounded moments) Suppose that As-

sumptions A and B hold. Then there exists a unique stationary ergodic solution (x∗t , z
∗
t )t≥0

to the dynamic system defined in (4.2) and (4.4), featuring the transformed perturbation

policy function given in (4.7). Additionally,

(i) the solution has fading memory, i.e. it is geometrically ergodic and absolutely reg-

ular (or β-mixing);

(ii) the solution has finite moments µr := E‖x∗t‖r and νrm = E‖z∗t‖rm;

(iii) laws of large numbers apply to the sample paths, that is, almost surely

lim
T→∞

1

T

T∑
t=1

‖xt‖r = µr and lim
T→∞

1

T

T∑
t=1

‖zt‖rm = νrm.

Assumption B imposes additional conditions on our state space system. Assump-

tion B2 is quite weak and is satisfied for all distributions that are used in practice. The

stronger, and also harder to check, condition is Assumption B1. We present Assumption

B, because simplifying Assumption B1 will require us to assume that the innovations have

full support. This is not always the case, as we might, for example, have strictly positive

innovations. If we can make the assumption of full support, then we get an easier set of

conditions.
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Assumption C.

C1. There exists an integer t ≥ 1 such that the matrix
[
H t−1

x Hz · · · HxHz Hz

]
has

rank nx.

C2. The matrix Hx is invertible.

C3. The innovation εt is absolutely continuous with respect to the Lebesque measure

on Rnz with strict positive density on the whole space Rnz .

Proposition 4.3.3. Assumption C implies Assumption B.

Assumption C2 ensures that the transformed perturbation policy function does not

move to lower dimensional subspaces of X . Condition C1 implies that the effect of the

innovations is not contained in a lower dimensional subspace. This means that, together

with Assumption C3, they make sure that the transformed perturbation policy function

can reach any point in X and thus Assumption B1 is satisfied.

4.4 The plug-in tau

In this section we motivate our choice for τ̂ , the plug in value of τ , as defined in (4.8). As

mentioned in Section 4.2, its value influences the shape of the transformed perturbation

policy function and thus has an effect on sample path behaviour in the resulting trans-

formed perturbation dynamic system. We want to ensure two important properties for

this dynamic system. Firstly, we want sample paths to be stable and non locally explo-

sive. In Section 4.4.1 we argue that this requires relatively large values of τ . Secondly,

nonlinear dynamics must be preserved, which needs τ to take on somewhat small values,

see Section 4.4.2. Together these two conditions specify a rather narrow collection of

available functions, resulting in (4.8), as derived in Section 4.4.3.

4.4.1 Ensuring stability

The transformed perturbation method guarantees stable and nonexplosive paths regardless

of the choice of τ , as proved in Section 4.3. However, picking τ very small can create

locally explosive dynamics. Locally explosive dynamics originate when the jacobian of
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the policy function with respect to x has expected spectral radius greater than one on

a large enough subset of X . A spectral radius greater than one implies that the policy

function expands on some subspace, which can create multiple fixed points, as happens

with the regular perturbation policy function. Sample paths then typically move around

one fixed point, until a large innovation pushes it to another fixed point after which the

path moves around the new one. These jumps can locally look very similar to explosive

sample paths, even though the dynamic system is stable. We illustrate this effect with the

following example updating equation

xt+1 = 0.3xt + zt+1 + 2x3
t e
−0.5x2t , (4.10)

where the (zt)t∈N are updated as in (4.2). Note that this is a univariate example of (4.7)

with τ = 0.5. Figure 4.4.1a plots the expected value E(xt+1 | xt) as a function of xt.

This function has large intervals on which its absolute derivative exceeds one, which has
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Figure 4.4.1: The expected policy function (left panel) and an example sample path (right panel)
for the updating equations defined in (4.10) and (4.2).

resulted in a total of five fixed points. The smallest one at -2.35, the middle one at zero

and the largest one at 2.35 are attractors while the other two are repellers. A sample

path produced while using (4.10) will jump between the neighbourhoods around the three

attractors. Figure 4.4.1b plots an example sample paths that first spends some time around

-2.35, then jumps to a neighbourhood of the origin and then quickly moves on to the area
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around the largest attractor. Notice the similarity with an explosive sample path, even

though this path will almost surely eventually come down to the lowest attractor again.

We wish to keep the spectral value of the Jacobian of the transformed perturbation

policy function typically below one (in expectation) to avoid locally explosive behaviour.

This Jacobian is of the form

J = Hx + P (x, z)Φτ (x̃),

where P is a m’th order multivariate polynomial function. We can only control the non-

linear part of the derivative, i.e. the second part of the summation, with our choice for

τ . Any norm of P goes to infinity as ‖x‖ goes to infinity. Hence, if we choose τ too

small, then P (x, z)Φτ (x̃) creates large areas on the state space with expected spectral

radius greater than one. If we were only concerned with ensuring stability, then ideally

we would choose τ = ∞, so that Assumption A2 ensures that ρ(J) < 1 on the entire

state space. Doing so, however, cancels all nonlinear effects making the transformed per-

turbation method equal to linear perturbation, which as discussed in the introduction has

many flaws. Therefore we conclude that we would like to make τ as large as possible,

while preserving as much nonlinear dynamics as possible close to the steady state. If we

choose τ unequal to infinity, then its size generally must depend on ρ(Hx). The closer

ρ(Hx) is to one, the less room remains available for P (x, z)Φτ (x̃). Accordingly we have

to impose that τ goes to infinity as ρ(Hx) gets closer to one. Therefore we must find a

function f : (0, 1)→ [0,∞) such that τ = f(ρ(Hx)) and

lim
ρ(Hx)→1

f(ρ(Hx)) =∞. (4.11)

4.4.2 Preserving nonlinear dynamics

We have concluded that we want to choose large τ to avoid locally explosive behaviour,

but not so large as to destroy relevant nonlinear dynamics. In this section we formalise

what we mean with preserving nonlinear dynamics. To do so we expand xt back in time,
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mimic the proof of Theorem 4.3.1 and use Proposition 4.7.1 to find the upper bound

‖xt‖ ≤ c̃+
∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖+ c

m∑
j=0

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)
.

for some constants c, c̃ > 0. The first, respective second, summation here is the approx-

imate total effect over time of the linear, respective nonlinear, terms in (4.7). The first

summation

∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖,

is the familiar term that arises in autoregressive processes.2 The autoregressive part Hxx

of the policy function (4.7) introduces memory into the system, so that past innovations

‖zt−k‖ influence the value of ‖xt‖. The strength of the memory depends on the size of

ρ(Hx). If it is close to zero, then memory fades away fast and past innovations are of

little weight to xt. As ρ(Hx) increases, past innovations matter more up to the limit case

ρ(Hx) = 1, where memory does not fade anymore, at which point every past innovation

is equally important and the sum diverges for all matrix norms.

We would like the impact of past innovations through the nonlinear terms of the trans-

formed perturbation policy function to be of the same magnitude as those of the linear

effect, so that both the linear and nonlinear dynamics are present in the solution paths.

Specifically, we want the rate at which τ goes to infinity to be restricted such that the

series

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)

diverge for all 0 ≤ j ≤ m as ρ(Hx) → 1. If this were not the case, then they would

converge and thus we would restrict some nonlinear effects so much that the linear effect

is infinitely stronger as ρ(Hx) increases. To ease notation we define δt =
∑m−j

i=0 ‖z∗t‖i.

2Note that it converges by Assumption A, Proposition 2.5.1 of Straumann (2005) and Proposition 4.3 of
Krengel (1985).
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The argument above then amounts to the following desired result: for all j ∈ N we have

lim
ρ(Hx)→1

∞∑
k=0

ρ(Hx)kτ−j/2δt−k = lim
ρ(Hx)→1

f(ρ(Hx))−j/2
∞∑
k=0

ρ(Hx)kδt−k =∞. (4.12)

It is not immediately clear what divergence rates for f(ρ(Hx)) satisfy (4.12). Therefore

we include the following result to simplify the expression.

Lemma 4.4.1. Suppose that E‖εt‖m <∞. Then the limit

lim
ρ(Hx)→1

(1− ρ(Hx))
∞∑
k=0

ρ(Hx)kδt−k

converges to a finite and nonzero value.

It now follows from Lemma 4.4.1 that (4.12) is equivalent to

lim
ρ(Hx)→1

f(ρ(Hx))j/2(1− ρ(Hx)) = 0. (4.13)

4.4.3 Choice for tau

We need a function f : (0, 1) → (0,∞) that satisfies both (4.11) and (4.13). To simplify

these equations further we define f̃ : (0,∞) → [0,∞) as f̃( 1
1−ρ(Hx))

) = f(ρ(Hx)) and

substitute y = 1
1−ρ(Hx))

. Equations (4.11) and (4.13) then can be rewritten as

lim
y→∞

f̃(y) =∞ and lim
y→∞

f̃(y)j/2

y
= 0.

These two equations together specify a fairly small collection of functions. To find the

function that diverges fastest we consider families of familiar functions in decreasing

order of rate of divergence. Note that any exponential, polynomial or radical function

diverges to infinity too fast to satisfy the rightmost limit for all j ∈ N. The next natural

candidate in line for the rate of divergence is the logarithmic function, which leads to the

specification

f(ρ(Hx)) = log

(
1

1− ρ(Hx))

)
.
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This is the function we used for our choice in (4.8).

The constant τ should also depend on the size of the range on which the state variables

take place. Suppose that we increase the scale of our dynamic system while keeping the

exact same dynamics. Then τ should become smaller as regions farther away from the

steady-state are visited more often. Therefore we include the c parameter to make sure

that as we make the scale larger, τ becomes smaller. Many of the other elements involved

in the perturbation updating function, such as σ or Hi for i ≥ 2 seem to be omitted in

calculating the plug in τ . However, these elements have an effect on the range of the state

variables and thus are implicitly included via c.

4.5 Accuracy

In this section we evaluate the accuracy of the transformed perturbation solution. In Sec-

tion 4.5.1 we prove theoretic results on both global and local accuracy. We show that

the optimal transformed perturbation solution is always at least as accurate as regular

perturbation and demonstrate that transformed polynomials, like regular polynomials can

perfectly approximate the real policy function h as we let the approximation order m

go to infinity. Moreover, we prove that transformed perturbation is locally as accurate

as standard perturbation and present common situations in which transformed perturba-

tion globally outperforms regular perturbation. Section 4.5.2 discusses two DSGE models

from Den Haan and De Wind (2012) and compares all discussed solution methods accord-

ing to several criteria such as path errors, euler errors and produced moments. It shows

that transformed perturbation outperforms pruning and regular perturbation for both the

optimal τ ∗ and the plug in τ̂ .

4.5.1 Theoretical results

In order to analyse the accuracy of our approximation method we define the pointwise

approximation errors attained by the perturbation and transformed perturbation methods
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respectively, at (x, z, σ) ∈ X × Z × R≥0 as

Ep(x, z, σ) := ‖hp(x, z, σ)− h(x, z, σ)‖,

Etp(x, z, σ) := ‖htp(x, z, σ)− h(x, z, σ)‖.

We begin by showing that the function approximation by transformed perturbation con-

verges on analytic domains, like the standard perturbation approximation. This result

implies that we can arbitrarily accurately approximate the true policy function by increas-

ing the order m.

Proposition 4.5.1. Suppose that the true policy function is analytic over a compact set

S ⊆ X ×Z×R≥0. Then m-order transformed perturbation errors vanish uniformly over

S for any sequence τ → 0 as the perturbation order diverges to infinity. That is,

lim
m→∞,τ→0

sup
(x,z,σ)∈S

E
(m)
tp (x, z, σ) := ‖h(m)

tp (x, z, σ)− h(x, z, σ)‖ = 0.

Next, we prove that transformed perturbation is always able to outperform regular

perturbation.

Proposition 4.5.2. For any policy function h there exists a τ ≥ 0 such that Etp(x, z, σ) ≤

Ep(x, z, σ) for all possible values of x, z and σ.

Note that this result makes no assumptions on the true policy function and implies

that using the optimal τ ∗ for the transformation guarantees an equal or better approxima-

tion compared to regular perturbation. This result is true even when regular perturbation

sample paths do not seem to explode. Therefore, it may be argued that transformed per-

turbation should always be used over regular perturbation.

We proceed by studying the accuracy properties of the transformed perturbation method

for arbitrary values of the constant τ . First we show that locally the transformed polyno-

mials inherit the excellent approximation qualities of perturbation methods. This follows

because the exponential function Φτ (x̃) is asymptotically quadratic as ‖x‖ goes to zero.

A consequence of the proposition below is that, close to the steady state, errors between

the transformed perturbation paths and the true paths are of the same magnitude as the

errors between the regular perturbation paths and the true paths for m = 2, 3.
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Proposition 4.5.3. Suppose that x0 = 0nx and z0 = 0nz . Let (xt)t≥0 be the path gener-

ated by the true policy function (4.4) and let (x̂t)t≥0 be the path generated by the m’th

order transformed perturbation policy function, both initialised at these same starting

values. Then it holds for all t ∈ N that

‖x̂t − xt‖ =

O (σ3) if m = 2

O (σ4) if m > 2

as σ → 0.

Transformed perturbation has the same local properties as regular perturbation, but on

a global scale it is almost guaranteed to perform much better. Clearly if the true policy

function produces explosive sample paths, then our method, which does not, cannot be

assured to work well. The next result exhibits a very general set up in which the true

policy function is ensured to produce nonexplosive sample paths making transformed

perturbation infinitely more accurate in the tails than regular perturbation.

Proposition 4.5.4. Suppose that Assumptions A1, A3 and C3 hold and that the true policy

function h satisfies

lim sup
‖x‖→∞

E(‖h(x, z1, σ)‖ | z0 = z)

‖x‖
< 1 (4.14)

for all possible values of z and σ. Then the true policy function almost surely produces

nonexplosive sample paths and if hp(x, z, σ) contains a nonzero higher order monomial

in x, then

lim
‖x‖→∞

Etp(x, z, σ)

Ep(x, z, σ)
= 0 (4.15)

for all possible values of z and σ outside of a set of Lebesque measure zero.

Moreover, condition (4.14) is implied by each of the following common conditions that

are found in the literature on stable stochastic dynamic systems. The true policy function

h

(i) is eventually bounded by the 45 degree line for all possible values of z and σ. That
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is,

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

< 1.

(ii) is uniformly contracting for all possible values of z and σ. That is,

sup
x1,x2∈X

‖h(x1, z, σ)− h(x2, z, σ)‖
‖x1 − x2‖

< 1.

(iii) is slowly varying at infinity for all possible values of z and σ. That is, for all a > 0

we have

lim
‖x‖→∞

h(ax, z, σ)

h(x, z, σ)
= 1.

4.5.2 Applications

In this section, we revisit two DSGE models used in Den Haan and De Wind (2012) to

compare transformed perturbation to pruning and other solution methods. Below, we will

show that the transformed perturbation approximation significantly outperforms both the

regular perturbation approximation and the pruning method. For the purpose of com-

paring the performance of different solution methods, the true policy function will be

approximated to an arbitrary level of accuracy on a relevant set using techniques such as

projection methods or value function iteration, see Aruoba et al. (2006). We can then

compare the solution methods by analysing sample paths between the “true” solutions

and the approximated ones. The length of our time paths are T = 104, with a burn in

period of 500 observations.

We compare sample paths according to three different criteria. The first one measures

the distance between a period t variable generated by an approximation versus the one

generated by the true policy function as in Den Haan and De Wind (2012). Let xt be a

generalisation of a univariate variable according to the true solution, let ẋt be generated

according to some approximation and let M be the mean of the path (xt)
T
t=1. Then we
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define the error at time t as

min

{∣∣∣∣ ẋt − xtxt

∣∣∣∣ , ∣∣∣∣ ẋt − xtM

∣∣∣∣} ,
that is, we take the minimum of the absolute percentage error and the absolute error

relative to the mean of the true solution path. The minimum between these two is chosen

because the percentage error inflates the error when xt is close to zero, while the error

scaled by the mean overestimates inaccuracy when variables take on values far away from

their mean.

The second criteria that we use are Euler errors. The equilibrium condition (4.1) is

typically unequal to zero when we use an approximation method instead of the true solu-

tion. Its size is an indication for accuracy, because the size of the difference in supremum

norm on a compact set between an approximate policy function and the true solution is of

the same magnitude as the Euler error, see Theorem 3.3 of Santos (2000). We report the

non normalized sample Euler error. We don’t normalize our Euler errors, because we are

only interested in relative accuracy.

Finally we compare sample moments generated by the approximated paths versus the

true ones. DSGE models are often estimated using moment based approaches such as

the (simulated) method of moments or indirect inference. Therefore the accuracy of the

moments will have an impact on the estimated parameters. Let xt and yt be univariate

variables, then we compare the sample moments

µk(xt) =
1

T

T∑
t=1

xkt

and cross moments µ(xity
j
t ).

The Deaton model

The first model we consider is a partial equilibrium model in which agents face idiosyn-

cratic income risk. The original model was proposed in Deaton Angus (1991), however,

we use the modified penalty function that was introduced in Den Haan and De Wind

(2012) to compare pruned and non-pruned perturbation solution methods. The model
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is therefore identical to Model 3 in Den Haan and De Wind (2012). The optimization

problem is given by

max
(ct,at)∞t=1

E1

∞∑
t=1

βt−1

(
c1−γ
t − 1

1− γ
− P (at)

)
,

s.t.

ct + at/(1 + r) = at−1 + ezt ,

zt = z̄ + εt,

εt ∼ N(0, σ2),

a0 given,

where ct stands for the agents consumption, ezt represents exogenous and random income

and r is the exogenous interest rate. The variable at denotes the amount of chosen assets

in period t, we assume that a0 is given. The amount of assets is allowed to be negative, so

the agent can borrow. The function P is given by

P (at) =
η1

η0

e−η0at + η2at.

Note that it is decreasing in its argument and thus penalizes utility when the agent decides

to borrow. We write xt = at−1 + ezt for the amount of cash on hand at time t. Note that

this DSGE model has a univariate state equation in xt, because the zt are independent.

Our calibration is copied from the original paper and given in Table 4.5.1. The value

r γ z̄ σ β η0 η1 η2

0.03 3 0.4 0.1 0.9 20 0.04464 0.00352

Table 4.5.1: The choice of parameter values for the Deaton model.

of β is low to make agents impatient and ensure that borrowing constraints have suffi-

cient effect on the decision process. The value of σ is chosen large, because the model

describes single agent/household behavior and thus works with idiosyncratic uncertainty.

The values of η1 and η2 are chosen such that at has the same moments as in Deaton Angus

(1991). We refer to Den Haan and De Wind (2012) for a more detailed discussion on the

model and choice of parameters.
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We use a second order perturbation approximation to obtain

xt+1 − xss = 0.01 + 0.42(xt − xss) + 1.02(xt − xss)2 + ezt+1

and values for τ given by τ ∗ = 1.08 and τ̂ = 0.98. The innovations in the model are

strictly positive, so we cannot use Assumption C to ensure stability of transformed pertur-

bation sample paths. Instead we use Assumption B, which is easy to check in univariate

cases. Note that all parameters are positive and the autoregressive parameter is smaller

than one. It immediately follows that the transformed perturbation approximation is able

to reach any sufficiently large point and thus we have an open interval of reachable points

and Assumption B1 is satisfied. All the other Assumptions in A and B are easily checked.

Therefore we obtain all the desired stability results from Theorem 4.3.2.

To compare the approximate policy functions we plot in Figure 4.5.1a the expected

value of next-period’s cash on hand E(xt+1 | xt), because this directly reveals whether

the dynamics are stable or not. The true policy function has a single stable fixed point (an

attractor). In contrast, the second order perturbation policy function has a second fixed

point (a repeller). This second intersection with the y = x line is located above the true

steady state. Sample paths produced by the second order perturbation function eventually

reach the state space to the right of the repeller, after which they are expected to diverge,

and eventually do with probability one. Since the second fixed point is relatively close to

the true steady state this also frequently occurs in our finite time simulated paths, making

second order perturbation infeasible. The transformed perturbation policy function solves

the problem as it negates the second order monomial fast enough to ensure that no second

fixed-point is created. The optimal and plug in values for τ , while irrelevant for stability,

therefore create a policy function that generates very similar dynamics as the true policy

function. Figure 4.5.1c displays the same functions as in Figure 4.5.1a, but focussed

on the relevant part of the state space when using stable methods. In addition we have

added a scatter plot of the pruning sample path. From this plot it becomes immediately

apparent that pruning does not deliver a policy function on the original state space, as we

have different updates for the same starting value. Moreover, it can be seen that pruning

on average is less accurate than both the transformed perturbation methods. The policy
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Figure 4.5.1: Expected policy functions for xt in the Deaton model generated by a second order
perturbation approximation and the transformed perturbation method for both the optimal τ∗ and
the plug in τ̂ . Figure 4.5.1a shows the actual policy functions, Figure 4.5.1b shows the pointwise
errors with respect to a close approximation of the true policy function and Figure 4.5.1c zooms
in on the relevant part of the state space to compare the previous methods to pruning.

function corresponding to the optimal τ ∗ can be seen to be slightly more accurate than the

plug in τ̂ . This is extra apparent when we look at the pointwise errors between the true

path and the perturbation respective transformed perturbation approximations in Figure

4.5.1b.

It’s not surprising that the resulting transformed perturbation sample paths are very

close to the true ones. The sample path accuracy results are summarised in Table 4.5.2,

where we report maximum and mean absolute path errors in addition to Euler errors.

Here we see that second order perturbation explodes, so sample paths created by this
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Path errors Euler errors
at ct

max mean max mean
Perturbation 1 132 38.4 10.7 1.06 3.11
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 53.0 6.54 3.29 0.31 0.28
Transformed 2 plug-in 54.4 6.50 3.40 0.31 0.29
Pruning 2 123 13.6 6.42 0.69 0.51

Table 4.5.2: Absolute sample path and Euler errors for the Deaton model. Path errors are com-
pared to a projection approximation and given in percentages. Euler errors are also scaled by 102.
The results are based on a time path of 104 observation with a burn in time of 500 observations.

approximation are unusable. Therefore we need a stable approximation approach. The

transformed perturbation approximation performs better than pruning and much better

than linear approximation on all criteria. Note that the maximum and mean path errors

for the transformed perturbation are about half of those for the pruning approximation, in

both the asset and consumption paths.

The difference in accuracy is extra apparent when we look at the cumulative path er-

rors, see Figure 4.5.2, which are significantly smaller for our method. This accumulation

of inaccuracy then leads to larger errors when we compute some of the sample moments,

which can be found in Table 4.5.3. Here we see that first order perturbation performs a
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Figure 4.5.2: Cumulative paths errors for the number of assets in the left panel and consumption
in the right panel. Errors are calculated by a close approximation of the true policy function.

lot worse than the other methods on the asset moments, which was to be expected, as it

missed the nonlinear effects. Transformed perturbation is more accurate than pruning for
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Sample moments
µ(at) µ2(at) µ3(at) µ4(at) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.083 0.016 0.004 0.001 1.502 2.264 3.423 5.192
Perturbation 1 58.1 62.2 84.2 89.7 0.09 0.11 0.03 0.16
Transformed 2 optimal 0.70 7.58 7.83 6.79 0.00 0.03 0.09 0.17
Transformed 2 plug-in 0.43 6.89 6.25 3.77 0.00 0.03 0.09 0.17
Pruning 2 5.88 23.50 31.66 38.27 0.01 0.06 0.20 0.40

Cross moments
µ(atct) µ(atc

2
t ) µ(atc

3
t ) µ(a2t ct) µ(a2t c

2
t ) µ(a3t ct)

True 0.13 0.20 0.31 0.03 0.04 0.006
Perturbation 1 57.3 56.5 55.7 63.0 63.6 84.1
Transformed 2 optimal 0.96 1.18 1.35 7.45 7.30 7.65
Transformed 2 plug-in 0.69 0.90 1.07 6.73 6.57 6.03
Pruning 2 6.30 6.58 6.75 23.2 22.8 31.1

Table 4.5.3: Sample and cross moments up to fourth order for the Deaton model. The true row
presents the moments given by a close approximation. The other moments are given as absolute
percentage differences from the true ones. The results are based on a time path of 104 observation
with a burn in time of 500 observations.

all moments, especially for ones concerning the assets where we see improvement up to

a factor ten. Surprising is that the plug-in τ̂ transformed policy function performs better

on the moments than the optimal τ ∗ transformed policy function.

Performance in a parameter estimation scenario

When researchers are interested in estimating parameters, it is important to ensure that

the employed approximation method is accurate across a wide range of parameter values.

It is thus important to investigate what happens to the accuracy of our approximation

methods when we move the parameters away from an initial calibrated parameter value.

Figure 4.5.3 plots the expected Euler errors for varying values of β and γ. Note that,

as described in Section 4.2.4, for the optimal transformed perturbation method we have

kept the initial calculated optimal τ ∗, while the plug in transformed perturbation method

updates τ̂ along with the parameters. We see in Figure 4.5.3 that the expected Euler errors

for both the transformed perturbation methods are smaller than those for the pruning

method on a significant area around the calibration. This implies that each transformed

perturbation method outperforms the pruning method in an estimation setting when the

initial parameters have been set sufficiently close to the true ones. The two transformed

perturbation methods have such similar Euler errors, because the plug-inτ̂ does not vary

much as we change the parameters and stays especially close to the optimal τ ∗.
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Figure 4.5.3: Expected Euler errors for the Deaton model on an area around the calibrated param-
eter values. Figure 4.5.3a portrays the results when changing β and Figure 4.5.3b when changing
γ.

The Matching model

The second model we examine is a matching model also featured in Den Haan and

De Wind (2012). The model has two types of agents, workers and entrepreneurs, both

of which are members of the same representative household. The household earns wages

and firm profits from its members at the end of each period. These are then distributed

among the members for consumption.

Firms: The main decision is made by a representative entrepreneur who tries to max-

imise future discounted firm profits. The maximisation problem is given by

max
(nt,vt)∞t=1

E1

∞∑
t=1

βt−1

(
ct
c1

)−γ
((ezt − w)nt−1 − ψvt) ,

s.t.

nt = (1− ρn)nt−1 + pf,tvt,

zt =

zt−1 with probability ρz

−zt−1 with probability 1− ρz
,

n0, z1 given.

Here ct is the consumption level of the household, nt is the number of employees at

the end of period t, vt is the number of vacancies set by the firm, pf,t is the number of

matches per vacancy, w is the wage rate, ψ is the cost of placing a vacancy and ρn is the
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exogenous separation rate. Each worker produces ezt , which means that the profit per

worker is given by ezt − w. The random variable zt can only take on two values, which

we denote −ζ and +ζ . This is an artificial simplification introduced in Den Haan and

De Wind (2012) enabling us to easily analyse the approximation methods to the model in

a graphical manner. Alternatively, one can use a standard autoregressive updating function

for zt. Finally, the firm takes the number of matches pf,t as given.

Consumers: The household consumes the whole income earned by its members. That

is,

ct = wnt−1 + (ezt − w)nt−1 − ψvt = eztnt−1 − ψvt.

Matching market: The number of hires per vacancy is determined on a matching

market where the firms and 1 − nt−1 unemployed workers search for a match. The total

number of matches is given by

mt = φ0(1− nt−1)φv1−φ
t .

This implies that the total number of matches per vacancy is given by

pf,t =
mt

vt
= φ0

(
1− nt−1

vt

)φ
.

The model requires some restrictions on the parameters to ensure that a solution in the

interior of the domain exists and thus that the policy function is smooth. Our choice

of parameter values is again taken from Den Haan and De Wind (2012) and given in

Table 4.5.4. See the original paper for a detailed discussion on the matching model, the

parameter values and further references.

γ w ψ ρn ρz ζ σ β φ0 φ
4.5 0.973 0.4026 0.0368 0.975 0.0224 0.007 0.99 0.7 0.5

Table 4.5.4: The choice of parameter values for the Matching model.
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A second order perturbation approximation of the state equation delivers

nt+1 − nss = 0.95 + 0.46(nt − nss) + 0.52zt+1

− 2.92(nt − nss)2 − 6.57(nt − nss)zt+1 − 1.01z2
t+1

and we find

τ ∗ = 26.1 and τ̂ = 13.6.

The updating equation for the exogenous state variable zt is not of the type (4.2). One

can extend the theory in a rather straightforward way to also apply to general Markov

chain updating equations for the exogenous state variables, but we chose not to do this

to keep the assumptions and proofs relatively clear and concise. Note that if we would

have chosen a standard autoregressive process of order one for (zt)t≥0, then Assumptions

A and C can easily seen to be satisfied as we have a univariate system. Therefore, in that

case, we would have obtained all the desired stability results from Theorem 4.3.2.

The control variables can be explicitly calculated once the path for the single state

variable, the number of employees, is known. We therefore compare the approxima-

tion methods according to their best performance: either calculating the control variables

directly, or approximating the observation equation. We compare the transformed pertur-

bation and regular perturbation approximation in Figure 4.5.4. Figure 4.5.4a shows the

policy functions for the number of employees in the two possible scenarios for zt. The

case zt = −ζ is the crucial one here, as the regular perturbation approximation stays

below the y = x line and therefore does not intersect it. This implies that the second

order perturbation sample paths for nt tend to minus infinity if zt is equal to −ζ for many

consecutive times. The case zt = +ζ goes to minus infinity for values of nt much smaller

than portrayed in the figure. Hence, once nt has become small enough it has no chance

of recovering and thus sample paths diverge to minus infinity with probability one. As

in the previous example, the explosive behaviour is encountered in our finite time sample

paths with a high frequency, rendering regular perturbation infeasible. The transformed

perturbation policy function avoids the problem described for both values of τ as they

both scale down the second order monomial fast enough to ensure that the policy func-
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Figure 4.5.4: Policy functions for nt in the matching model generated by a second order pertur-
bation approximation and the transformed perturbation method. Figure 4.5.4a shows the actual
policy functions, Figure 4.5.4b shows the pointwise errors with respect to a close approximation
of the true policy function and Figure 4.5.1c zooms in on the relevant part of the state space to
compare the previous methods to pruning.

tions cross the y = x line at a unique point, like the true policy function. The dynamics of

our approximated systems therefore closely mimic the true dynamics for nt. Figure 4.5.4c

again zooms in on the relevant part of the state space when using the stable solution meth-

ods and includes a scatter plot of the pruning sample path. Again, we are reminded that

pruning does not provide a policy function on the original state space. Moreover, pruning

provides less accurate updates, especially for large value of nt in the case zt = +ζ and

small values in the case zt = −ζ . The policy function corresponding to the optimal τ ∗ is
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clearly the most accurate method in our comparison, which is extra clear when we look

at the pointwise errors between the true path and the perturbation respective transformed

perturbation approximations in Figure 4.5.4b.

The graphical results are strengthened by studying the sample path errors in Table

4.5.5. Here we see that the transformed perturbation approximation is both in extreme

Path errors Euler errors
nt ct

max mean max mean
Perturbation 1 3.20 1.89 3.53 1.80 0.26
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 0.26 0.07 0.64 0.32 0.08
Transformed 2 plug-in 0.71 0.25 0.97 0.23 0.04
Pruning 2 1.79 0.95 1.76 0.95 0.10

Table 4.5.5: Absolute sample path and Euler errors for the matching model. Path errors are
compared to a close approximation of the truth and given in percentages. Euler errors are also
scaled by 102. The results are based on a time path of 104 observation with a burn in time of 500
observations.

cases and on average performing better than both perturbation and pruning. The improve-

ment compared to perturbation is not surprising given the nonlinearity of the plots in

Figure 4.5.4. This time the optimal transformed perturbation method performs better than

the plug in approximation. It is also more than a factor ten times better on average than

pruning for the number of employees and more than a factor three times better on average

than pruning on consumption paths.

We emphasize the gravity of the difference in accuracy by plotting the cumulative path

errors in Figure 4.5.5. This total difference in accuracy then again leads to a large differ-

ence in sample moment accuracy, which is summarised in Table 4.5.6. Like before we see

that the transformed perturbation method, especially the optimal one, is best at mimicking

the dynamics of the sample paths. Note that both the optimal and transformed perturba-

tion method outperform pruning on all moments, especially for the higher order moments,

where pruning loses relatively more accuracy by ignoring higher order effects. Optimal

transformed perturbation outperforms pruning up to a factor forty for the fourth order mo-

ments of consumption, while plug-in transformed perturbation outperforms pruning by a

factor three for most moments.
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Figure 4.5.5: Cumulative paths errors for the number of employees in the left panel and con-
sumption in the right panel. Errors are calculated by a close approximation of the true policy
function.

Sample moments
µ(nt) µ2(nt) µ3(nt) µ4(nt) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.93 0.87 0.81 0.76 0.91 0.83 0.76 0.70
Perturbation 1 1.90 3.77 5.62 7.43 1.81 3.57 5.27 6.91
Transformed 2 optimal 0.03 0.05 0.07 0.10 0.02 0.04 0.05 0.06
Transformed 2 plug-in 0.23 0.45 0.65 0.83 0.20 0.39 0.55 0.70
Pruning 2 0.68 1.30 1.88 2.40 0.65 1.23 1.73 2.16

Cross moments
µ(ntct) µ(ntc

2
t ) µ(ntc

3
t ) µ(n2t ct) µ(n2t c

2
t ) µ(n3t ct)

True 0.85 0.78 0.71 0.79 0.73 0.74
Perturbation 1 3.67 5.39 7.04 5.50 7.17 7.30
Transformed 2 optimal 0.04 0.06 0.07 0.07 0.08 0.09
Transformed 2 plug-in 0.42 0.59 0.73 0.62 0.77 0.80
Pruning 2 1.27 1.78 2.22 1.83 2.28 2.34

Table 4.5.6: Sample and cross moments up to fourth order for the matching model. The true row
presents the moments given by a close approximation. The other moments are given as absolute
percentage differences from the true ones. The results are based on a time path of 104 observation
with a burn in time of 500 observations.

Performance in a parameter estimation scenario

Once more we investigate the accuracy of the discussed methods in an area around the cal-

ibrated parameter values. Figure 4.5.6 plots the expected Euler errors for varying values

of β and γ while keeping the steady state values for the number of employees, the number

of matches per unemployed worker and the number of matches per vacancy equal. As in

the previous example we fix the optimal τ ∗ at the initial derived value at the calibrated

parameters, while the plug in τ̂ is updated along with the parameters. Figure 4.5.6 shows
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us that the expected Euler errors for each transformed perturbation method is smaller than

those for the pruning method on a relevant area around the calibration. Therefore, we

again conclude that an estimation procedure using the transformed perturbation method

improves accuracy over using either linear perturbation or pruning when the starting val-

ues are decently close to the true parameters.
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Figure 4.5.6: Expected Euler errors for the matching model on an area around the calibrated
parameter values. Figure 4.5.6a portrays the results when changing β and Figure 4.5.6b when
changing γ while keeping the steady state values for the number of employees, the number of
matches per unemployed worker and the number of matches per vacancy equal.

4.6 Conclusion

This paper introduces a new solution method for DSGE models that produces non ex-

plosive paths. The proposed solution method is as fast as standard perturbation methods

and can be easily implemented in existing software packages like Dynare as it is obtained

directly as a transformation of existing perturbation solutions proposed by Judd and Guu

(1997) and Schmitt-Grohe and Uribe (2004), among others. The transformed perturba-

tion method shares the same advantageous function approximation properties as standard

higher order perturbation methods and, in contrast to those methods, generates stable sam-

ple paths that are stationary, geometrically ergodic and absolutely regular. Additionally,

moments are shown to be bounded. The method is an alternative to the pruning method as

proposed in Kim et al. (2008). The advantages of our approach are that, unlike pruning,
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it does not need to sacrifice accuracy around the steady state by ignoring higher order

effects and it delivers a policy function. Moreover, the newly proposed solution is always

more accurate globally than standard perturbation methods and has proven to have su-

perior accuracy compared to regular perturbation and pruning for two example nonlinear

DSGE models.

4.7 Appendix: Proofs

4.7.1 Proofs of Section 4.3

We study the transformed perturbation method, as indicated in Section 4.3, as its asymp-

totic linear process plus a deviation (4.9). The deviation is bounded in x as Φτ (x̃) dom-

inates the function far away from the origin. The following result gives a uniform upper

bound to the size of the deviation over X .

Proposition 4.7.1. There exists a constant c ≥ 0 that does not depend on τ , such that

sup
x∈X
‖D(x, z)‖ ≤ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z‖i
)
.

PROOF. In this proof we specifically choose ‖ · ‖ equal to the Euclidean matrix norm

‖ · ‖e. This matrix norm is a crossnorm, i.e. it is multiplicative on Kronecker products,

see for example Lancaster and Farahat (1972). This implies, together with sub-additivity

and sub-multiplicativity, that

‖D(x, z)‖ ≤
m∑
i=2

‖Hi‖‖v‖iΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑

i=2

i∑
j=0

‖x‖j‖z‖i−jΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑

j=0

‖x‖jΦτ (x̃)

(
m−j∑
i=0

‖z‖i
)
.

100



4.7. APPENDIX: PROOFS

Next, note that

‖x‖jΦτ (x̃) ≤ ‖x‖je−τ‖x‖2e/max{xss},

which is a univariate function in ‖x‖e, since we chose ‖ · ‖ equal to ‖ · ‖e. It is straightfor-

ward to verify that this function is maximised at ‖x‖2
e = jmax{xss}

2τ
and thus there exists a

constant c̃ that does not depend on τ or x such that

sup
x∈X
‖x‖jΦτ (x̃) ≤ c̃τ−j/2 for all 0 ≤ j ≤ m.

�

Proof of Theorem 4.3.1

Assumptions A1 and A3 imply by Theorem 3.1 in Bougerol (1993) and the monotone

convergence theorem that there exists a unique stationary ergodic solution (z∗t )t∈N to (4.2)

with E‖z∗t‖rm < ∞. Moreover, ‖zt − z∗t‖ converges exponentially almost surely to zero

as t→∞, which implies that

lim inf
t→∞

‖zt‖ <∞ a.s.

and that, for every realisation, there exists a constant d > 0 such that ‖zt‖i ≤ ‖z∗t‖i + d

for all t ≥ 0 and 0 ≤ i ≤ m.

Next, we repeatedly expand the term Hxx in (4.7) to obtain the following expression

for the transformed perturbation path:

xt = H t
xx0 +

t−1∑
k=0

Hk
x (H0 +Hzzt−k +D(xt−1−k, zt−k)) .

We now use Proposition 4.7.1 to bound the deviation terms and then use the bounds on
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the path (zt)t≥0 to obtain

‖xt‖ − ‖Hx‖t‖x0‖

≤
t−1∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖‖zt−k‖+ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖zt−k‖i
))

≤
t−1∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

))
(4.16)

Next we artificially extend (z∗t )t≥0 to a stationary ergodic sequence (z∗t )t∈Z and then note

that (4.16) is bounded by

Yt :=
∞∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

))
.

The term within the brackets is stationary ergodic by Krengel’s lemma, see Proposition

4.3 in Krengel (1985), and the fact that (z∗t )t∈Z is stationary ergodic. Moreover it has a

finite log moment since E‖z∗t‖rm < ∞. Next, we can choose a matrix norm such that

‖Hx‖ < 1 by Assumption A2. Therefore, the infinite sum converges almost surely by

Proposition 2.5.1 of Straumann (2005). Again, the sequence (Yt)t∈Z is stationary ergodic

by Krengel’s lemma and thus there almost surely exists an M > 0 such that {Yt ≤ M}

occurs for infinitely many t > 0. We conclude that

lim inf
t→∞

||xt|| ≤M <∞.

Proof of Theorem 4.3.2

We study the processes (zt)t≥0 and (xt)t≥0 as a joint Markov process. This section will

make extensive use of Meyn and Tweedie (1993). We will first assume that (zt,xt)t≥0 is a

ψ-irreducible and aperiodic T -chain. See sections 4.2, 5.4 and 6.2 of Meyn and Tweedie

(1993) for a detailed discussion on these properties.

Proposition 4.7.2. Suppose (zt,xt)t≥0 is a ψ-irreducible and aperiodic T -chain and let

Assumptions A and B hold. Then all the results of Theorem 4.3.2 hold.
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PROOF. We will check the drift condition for t-step transitions, which is described in

condition (iii) of Theorem 1 in Saı̈di and Zakoian (2006), adapted from Theorem 19.1.3

in Meyn and Tweedie (1993) and originally suggested by Tjøstheim (1990). The condition

states that we need to find a non-negative function V : X ×Z → R and a t ∈ N such that

E (V (xt, zt) | x0 = x, z0 = z)

V (x, z)
(4.17)

is finite on a compact set C ⊆ X × Z and smaller than one outside of C. Note that the

set C actually has to be petite, but all compact sets are petite in a ψ-irreducible T -chain,

Theorem 6.2.5 in Meyn and Tweedie (1993). It then follows by Theorem 1 in Saı̈di and

Zakoian (2006) that there exists a unique stationary ergodic solution (x∗t , z
∗
t )t≥0 that is

geometrically ergodic and has the required moments, given our choice for V . Absolute

regularity follows from Theorem 1 in Davydov (1974) and the laws of large numbers

follow from Theorem 17.0.1 in Meyn and Tweedie (1993). The reason that we resort

to t-step, instead of 1-step, transitions is that Assumption A1 and Assumption A2 do

not guarantee that there exists a matrix norm such that both ‖Λ‖ < 1 and ‖Hx‖ < 1.

Assumption A1 can ensure that there exists a matrix norm such that ‖Λ‖ < 1, but then

Assumption A2 only provides the existence of a t ∈ N such that ‖H t
x‖ < 1 by Gelfand’s

formula.

We adopt the ideas of Cline and Pu (1999) and use the test function

V (x, z) = 1 + (‖x‖+ ω‖z‖m)r ,

where we will choose ω > 0 sufficiently large. If r ≤ 1, then (‖x‖ + ω‖z‖m)r ≤

‖x‖r +ωr‖z‖rm. We prove the theorem for the case r ≥ 1, as it is the harder case. In that

case Minkowski’s inequality provides the upper bound

E((‖xt‖+ ω‖zt‖m)r | x0, z0) ≤
(
E(‖xt‖r | x0, z0)

1
r + ωE(‖zt‖rm | x0, z0)

1
r

)r
.

We start by bounding the second expectation. Note that the expectations E‖σηεs‖rm are

bounded for all s ∈ {1, . . . , t} by Assumption A3. Expanding backwards and working
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out brackets then gives

E (‖zt‖rm | z0) ≤ E
((
‖Λtz0‖+ ‖Λt−1ε1‖+ · · · ‖εt‖

)rm | z0

)
≤ ‖Λ‖trm‖z0‖rm + o (‖z0‖rm) as ‖z0‖ → ∞.

(4.18)

Next, by Proposition 4.7.1 there exist constants c1, c2 > 0 such that ‖D(xs−1, zs)‖ <

c1 + c2(1 + ‖zs‖m) for all s ∈ {1, . . . , t}. It then follows again by backwards expansion

and the fact that ‖zs‖ ≤ 1 + ‖zs‖m that there exist constants d1, d2 > 0 such that

E (‖xt‖r | x0, z0) ≤ E

(∥∥∥∥∥H t
xx0 +

t−1∑
k=0

Hk
x (H0 +Hzzt−k +D(xt−1−k, zt−k))

∥∥∥∥∥
r

| x0, z0

)

≤ E

((
‖H t

x‖‖x0‖+ d1 + d2

t−1∑
k=0

‖zt−k‖m
)r

| x0, z0

)
≤
(
‖H t

x‖‖x0‖+O (‖z0‖m)
)r as ‖z0‖ → ∞.

The last inequality follows by repeated application of Minkowski’s inequality in combi-

nation with the same calculations as in (4.18). Filling everything in then upper bounds

(4.17) by

1 + (‖H t
x‖‖x‖+ (‖Λ‖tm + ω−1O (1))ω‖z‖m + o (‖z‖m))

r

1 + (‖x‖+ ω‖z‖m)r
as ‖z‖ → ∞.

Recall that ‖H t
x‖ < 1 and ‖Λ‖ < 1 and choose ω large enough such that ‖Λ‖tm +

ω−1O(1) < 1 as ‖z‖ → ∞. Then we can make the fraction smaller than one if we choose

‖x‖, ‖z‖ > M for a sufficiently large M . Let C = {(x, z) ∈ X × Z | ‖x‖, ‖z‖ ≤ M},

then (4.17) is bounded over C and smaller than one outside of C. �

It remains to be proven that (zt,xt)t≥0 is a ψ-irreducible and aperiodic T -chain, which

follows from the results of sections 6.0 - 1 of Meyn and Tweedie (1993). We have,

similarly to Proposition 6.1.2 and 6.1.3, that Assumption B2 ensures that the Markov

chain is strong Feller. It then follows by Proposition 6.1.5 and Assumption B1 that the

Markov chain is ψ-irreducible. Finally, we conclude that (xt)t≥0 is an aperiodic T -chain

by Lemma 6.1.4 and part (iii) of Theorem 6.0.1.
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Proof of Proposition 4.3.3

It is clear that Assumption C3 implies Assumption B2, so it remains to prove Assumption

C also implies Assumption B1. We will prove a stronger statement: Fix any x∗ ∈ X then

that point is reachable. Let t be the smallest integer such that assumption C1 holds. The

approach will be to show that we can find values for z1, . . . , zt that bring xt arbitrarily

close to x∗. It then follows by Assumption C3 that we have positive probability of xt

being arbitrarily close to x∗.

To find the values for the exogenous state variables, we start by expanding xt back in

time as

xt =
t−1∑
k=0

Hk
xH0 +H t

xx0

+
[
H t−1

x Hz · · · HxHz Hz

] [
z′1 z′2 · · · z′t

]′
+

t−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Assumption C1 ensures that we can select nx linearly independent columns from the ma-

trix
[
H t−1

x Hz · · · HxHz Hz

]
, which we denote a1, . . . , anx . Let A =

[
a1 . . . anx

]
and let δ =

[
δ1 . . . δnx

]′
be the vector consisting of the univariate stochastic variables

inside
[
z′1 z′2 · · · z′t

]′
that correspond to the columns a1, . . . , anx . Then, by setting the

random variables corresponding to the other columns equal to zero, we get

xt =
t−1∑
k=0

Hk
xH0 +H t

xx0 + Aδ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k). (4.19)

Suppose all the deviations are zero, then we immediately obtain that we need to choose

δ = A−1

(
x∗ −

t−1∑
k=0

Hk
xH0 −H t

xx0

)
. (4.20)

Generally, the deviations are nonzero, so that the choice (4.20) does not guarantee that xt
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is close to x∗. In fact we would obtain

xt = x∗ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k). (4.21)

The idea is then as follows. We show that sample paths can reach arbitrarily large values,

and then take such a large value to be our starting point x0. We then show that as the

starting point gets larger our choice for δ will get larger according to (4.20) and the whole

path from x0 to xt will be arbitrarily large. Since deviations converge to zero away from

the steady state we conclude that we can get xt arbitrarily close to x∗.

Formally, the deviations in (4.19) are nonlinear, which together with Assumption C2

and the fact that A is invertible means that we can for any starting point x0 reach a point

xt ∈ X such that H t
xxt =

∑nx

i=1 λiai has all λi ∈ R arbitrarily large. Therefore we can

assume the same for our starting point x0, that is, for all d > 0 we can choose x0 such

that H t
xx0 =

∑nx

i=1 λiai with |λi| > d for all 1 ≤ i ≤ nx. It immediately follows from

(4.20) that each |δi| goes to infinity linearly in d as we increase d.

Next, we show that increasing d ensures that each ‖xt−j‖ for 0 < j < t becomes

arbitrarily large. Let A(j) and δ(j) be the sub-matrix respective sub-vector of A and δ

such that for partially expanding xt we have

xt =

j−1∑
k=0

Hk
xH0 +Hj

xxt−j + A(j)δ(j) +

j−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Note that A(j) and δ(j) are nonempty since we chose t as small as possible. Combining

this with (4.21) gives

Hj
xxt−j = x∗ −

j−1∑
k=0

Hk
xH0 − A(j)δ(j) +

t−1∑
k=j

Hk
xD(xt−1−k, zt−k).

It then follows, since ‖xt−j‖ ≥ ‖Hj
x‖−1‖Hj

xxt−j‖, that we get

‖xt−j‖ ≥ ‖Hj
x‖−1

(∥∥A(j)δ(j)
∥∥− ‖x∗‖ − ∥∥∥∥∥

j−1∑
k=0

Hk
xH0

∥∥∥∥∥−
∥∥∥∥∥
t−1∑
k=j

Hk
xD(xt−1−k, zt−k)

∥∥∥∥∥
)
.

(4.22)
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The remaining part of the proof is a recursive argument. We start at j = t − 1, in which

case (4.22) gives

‖x1‖ ≥ d1

(∥∥A(t−1)δ(t−1)
∥∥− ‖D(x0, z1)‖

)
+ d2.

This goes to infinity linearly in d as we increase d, as the first norm increases linearly with

d while

lim
d→∞

D(x0, z1) = 0,

because the deviation is exponentially fast decreasing in its first argument and increasing

at only a polynomial rate in its second argument. Next, since ‖x1‖ goes to infinity linearly

in d, it follows by a similar argument

‖x2‖ ≥ d2

(∥∥A(t−2)δ(t−2)
∥∥− ‖D(x1, z2) +HxD(x0, z1)‖

)
+ d3

goes to infinity linearly in d as we increase d. Iterate until xt−1 to conclude that each

‖xt−j‖ for 0 < j ≤ t increases linearly with d to infinity and thus we can always choose

d large enough to ensure that the deviations in (4.21) are arbitrarily close to zero.

4.7.2 Proofs of Section 4.4

Proof of Lemma 4.4.1

We can rewrite

∞∑
k=0

ρ(Hx)kδt−k = (1− ρ(Hx))
∞∑
k=0

δt−k

∞∑
j=k

ρ(Hx)j = (1− ρ(Hx))
∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k.

Next, (δt)t∈Z is a stationary ergodic sequence by Krengel’s lemma, Proposition 4.3 in

Krengel (1985), and Eδt−k < ∞ by the assumption that E‖εt‖m < ∞ and part (ii) of
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Theorem 4.3.2. Therefore a law of large numbers holds and thus

lim
ρ(Hx)→1

(1− ρ(Hx))
∞∑
k=0

ρ(Hx)kδt−k = lim
ρ(Hx)→1

(1− ρ(Hx))2

∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k

= lim
ρ(Hx)→1

(1− ρ(Hx))2

∞∑
j=0

ρ(Hx)j(j + 1)Eδt−k

= Eδ0.

4.7.3 Proofs of Section 4.5

Proof of Proposition 4.5.1

Note that

‖h(m)
tp (x, z, σ)− h(x, z, σ)‖

≤ ‖h(m)
tp (x, z, σ)− h(m)

p (x, z, σ)‖+ ‖h(m)
p (x, z, σ)− h(x, z, σ)‖.

Now,

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
tp (x, z, σ)− h(m)

p (x, z, σ)‖ = 0,

because S is compact and τ → 0 as m→∞ and

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
p (x, z, σ)− h(x, z, σ)‖ = 0,

by the assumptions that the true policy function is analytic over a compact set S and the

Weierstrass M-test.

Proof of Proposition 4.5.2

This result follows immediately by noticing that setting τ = 0 makes the transformed

polynomials equal to the regular polynomials. Therefore we can always find a τ for

which transformed perturbation performs equally or better than regular perturbation.
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Proof of Proposition 4.5.3

Let (x̄t)t≥0 be the path generated by the m’th order perturbation policy function, also

initialised at the origin. Additionally, let vt = (xt−1, zt) and v̄t = (x̄t−1, zt). Throughout

this proof we let ‖ · ‖ be the infinity norm, or maximum norm.

It follows from the exogenous variable updating function in (4.2) and the fact that

z0 = 0nz that

‖zt‖ ≤ ‖Λ‖‖zt−1‖+ σ‖ηεt‖ = ‖Λ‖‖zt−1‖+O(σ)

= ‖Λ‖t‖z0‖+O(σ) = O(σ), ∀t ∈ N.

Next, we proof by induction that ‖x̄t‖ = O(σ) for all t ∈ N. It is true for t = 1, since

x0 = 0nx and thus

‖x̄1‖ ≤ ‖H0‖+ ‖Hz‖‖z1‖+
m∑
i=2

‖Hi‖‖v̄1‖i

= O(σ) +O(σ) +
m∑
i=2

‖Hi‖‖z1‖i = O(σ),

where we used that ‖z1‖ = O(σ) by the previous derivation and ‖H0‖ = O(σ) by the

definition of H0. Similarly, if ‖x̄t−1‖ = O(σ), then

‖x̄t‖ ≤ ‖H0‖+ ‖Hx‖‖x̄t−1‖+ ‖Hz‖‖zt‖+
m∑
i=2

‖Hi‖‖v̄t‖i = O(σ).

We proceed by showing via induction that ‖x̄t − xt‖ = O(σm+1) and ‖xt‖ = O(σ) for

all t ∈ N. This is true for t = 1, since by the reverse triangle inequality and the properties

of a Taylor approximation we have that

|‖x̄1‖ − ‖x1‖| ≤ ‖x̄1 − x1‖ = ‖hp(v1, σ)− h(v1, σ)‖

= O
(
‖(v1, σ)‖m+1

)
= O

(
‖(z1, σ)‖m+1

)
= O

(
σm+1

)
.
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If the statement hold for t− 1, then likewise

|‖x̄t‖ − ‖xt‖| ≤ ‖x̄t − xt‖ = ‖hp(v̄t, σ)− h(vt, σ)‖

≤ ‖hp(v̄t, σ)− hp(vt, σ)‖+ ‖hp(vt, σ)− h(vt, σ)‖

The second term is of O (σm+1) by the same argument as before. The first term requires

a bit more work

‖hp(v̄t, σ)− hp(vt, σ)‖ ≤ ‖Hx‖‖x̄t−1 − xt−1‖+
m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t −
⊗
i

vt

∥∥∥∥∥ ,
which is O (σm+1) since∥∥∥∥∥⊗

i

v̄t −
⊗
i

vt

∥∥∥∥∥ ≤ i‖v̄t − vt‖max{‖v̄t‖, ‖vt‖}i−1

= i‖x̄t−1 − xt−1‖‖(v̄t,vt)‖i−1 = O
(
σm+1

)
.

The next step is to show that ‖x̄t− x̂t‖ = O
(
σmin{m+1,4}) and ‖x̂t‖ = O(σ) for all t ∈ N.

Since x0 = 0nx we have ‖x̄1 = x̂1‖. Let v̂t = (x̂t−1, zt) and suppose the statement holds

for t− 1, then similarly as before we have

|‖x̄t‖ − ‖x̂t‖| ≤ ‖x̄t − x̂t‖ ≤ ‖Hx‖‖x̄t−1 − x̂t−1‖

+
m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t−1 −
⊗
i

v̂t−1

∥∥∥∥∥
+

m∑
i=2

‖Hi‖‖v̂t−1‖i−1
∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥
= O

(
σmin{m+1,4})+O

(
σmin{m+1,4})+O

(
σ2
) ∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ .
Note that

∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ =
∥∥∥1− e−τ‖˜̂xt−1‖2e

∥∥∥ = O(‖x̂t−1‖2) = O
(
σ2
)
,
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so that the result follows. The proposition is now proved by putting everything together:

‖x̂t − xt‖ ≤ ‖x̂t − x̄t‖+ ‖x̄t − xt‖ = O
(
σmin{m+1,4})+O

(
σm+1

)
= O

(
σmin{m+1,4}) .

Proof of Proposition 4.5.4

We start by showing that condition (4.14) ensures that the true policy function produces

nonexplosive sample paths. This follows from Theorem 9.4.1 in Meyn and Tweedie

(1993), which states that we have to find a non-negative function V : X × Z → R

such that

E (V (x1, z1) | x0 = x, z0 = z)

V (x, z)
< 1 (4.23)

for all x and z outside of a compactC ⊆ X×Z . We use the function V (x, z) = ‖x‖+‖z‖

and obtain similarly to the proof of Theorem 4.3.2 that there exists a constant d such that

(4.23) is bounded by

E(‖h(x, z1, σ)‖ | z0 = z) + ‖Λ‖‖z‖
‖x‖+ ‖z‖

+
d

‖x‖+ ‖z‖
.

Increasing x can make the first fraction smaller than one by condition (4.14), while the

second fraction can be made arbitrarily small. Therefore there exists an M > 0 such that

(4.23) is satisfied for all x, z > M .

Next we show that condition (4.14) implies (4.15). Note that condition (4.14) and

Assumption C3 imply that

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

<∞

for all possible values of z and σ outside of a set of Lebesque measure zero. However,

since hp(x, z, σ) contains a nonzero higher order monomial in x we have

lim inf
‖x‖→∞

‖hp(x, z, σ)‖
‖x‖

=∞.

for all nonzero values of z and σ. Finally, since the deviations in transformed perturbation

111



CHAPTER 4. TRANSFORMED PERTURBATION SOLUTIONS FOR DYNAMIC
STOCHASTIC GENERAL EQUILIBRIUM MODELS

go to zero away from the steady state we have

lim sup
‖x‖→∞

‖htp(x, z, σ)‖
‖x‖

= ‖Hx‖ <∞.

It immediately follows that the difference between the true and the perturbed policy func-

tions become infinitely many times larger than the errors between the true and the trans-

formed perturbation policy functions as ‖x‖ goes to infinity.

In the last part we show that conditions (i), (ii) and (iii) imply (4.14). Condition (i)

follows from the reverse Fatou lemma as

lim sup
‖x‖→∞

E(‖h(x, z1, σ)‖ | z0 = z)

‖x‖
< E

(
lim sup
‖x‖→∞

‖h(x, z1, σ)‖
‖x‖

∣∣∣∣∣ z0 = z

)
< 1.

Condition (ii) immediately implies condition (i) and condition (iii) implies condition (i)

since

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

= lim sup
‖x‖→∞

‖h(ax, z, σ)‖
‖ax‖

≤ lim sup
‖x‖→∞

‖h(ax, z, σ)‖
‖h(x, z, σ)‖

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖ax‖

=
1

a
lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

= 0.
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